conformally Einsteinian - definitie. Wat is conformally Einsteinian
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is conformally Einsteinian - definitie

MANIFOLD EQUIPPED WITH A RIEMANNIAN METRIC THAT IS CONFORMALLY FLAT
Conformally flat; Locally conformally flat manifold; Locally conformally flat
  • The upper manifold is flat. The lower one is not, but it is conformal to the first one

Conformally flat manifold         
A (pseudo-)Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation.
Conformal geometry         
STUDY OF ANGLE-PRESERVING TRANSFORMATIONS OF A GEOMETRIC SPACE
Conformal space; Conformal equivalence; Conformally equivalent; Conformal structure; Conformal class; Möbius geometry; Conformal manifold; R4,1
In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.
Einstein manifold         
RIEMANNIAN OR PSEUDO-RIEMANNIAN DIFFERENTIABLE MANIFOLD WHOSE RICCI TENSOR IS PROPORTIONAL TO THE METRIC
Einsteinian manifold; Einstein metric; Einstein space; Kähler-Einstein manifold; Kahler-Einstein manifold; Kaehler-Einstein manifold; Einstein metrics
In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations (with cosmological constant), although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds (including the four-dimensional Lorentzian manifolds usually studied in general relativity).

Wikipedia

Conformally flat manifold

A (pseudo-)Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation.

In practice, the metric g {\displaystyle g} of the manifold M {\displaystyle M} has to be conformal to the flat metric η {\displaystyle \eta } , i.e., the geodesics maintain in all points of M {\displaystyle M} the angles by moving from one to the other, as well as keeping the null geodesics unchanged, that means exists a function λ ( x ) {\displaystyle \lambda (x)} such that g ( x ) = λ 2 ( x ) η {\displaystyle g(x)=\lambda ^{2}(x)\,\eta } , where λ ( x ) {\displaystyle \lambda (x)} is known as the conformal factor and x {\displaystyle x} is a point on the manifold.

More formally, let ( M , g ) {\displaystyle (M,g)} be a pseudo-Riemannian manifold. Then ( M , g ) {\displaystyle (M,g)} is conformally flat if for each point x {\displaystyle x} in M {\displaystyle M} , there exists a neighborhood U {\displaystyle U} of x {\displaystyle x} and a smooth function f {\displaystyle f} defined on U {\displaystyle U} such that ( U , e 2 f g ) {\displaystyle (U,e^{2f}g)} is flat (i.e. the curvature of e 2 f g {\displaystyle e^{2f}g} vanishes on U {\displaystyle U} ). The function f {\displaystyle f} need not be defined on all of M {\displaystyle M} .

Some authors use the definition of locally conformally flat when referred to just some point x {\displaystyle x} on M {\displaystyle M} and reserve the definition of conformally flat for the case in which the relation is valid for all x {\displaystyle x} on M {\displaystyle M} .